

Complex
theory

Genvrin

Complex
numbers \mathbb{C}

Complex numbers
from Hamilton

A base with one
and only one
vector

The complex
exponential

Deconstruction

An operator

Construction of z

$\mathcal{P}_c \rightarrow 0$

$0 \rightarrow \mathcal{P}_c$

Deconstruction of

$\mathcal{P}_{\mathbb{R}^2}$

Complex theory

Hugues Genvrin

October 2025

Map from Hamilton :

$$\begin{cases} z.z' &= (x.x' - y.y', x.y' + x'.y) = z'.z, \\ z + z' &= (x + x', y + y') = z' + z. \end{cases}$$

Theorem

In the complex field, \mathbb{C} every number can be written under the form :

$$z = \rho.e^{i(\theta+2k\pi)} = \rho \cos(\theta) + i\rho \sin(\theta) = x + iy.$$

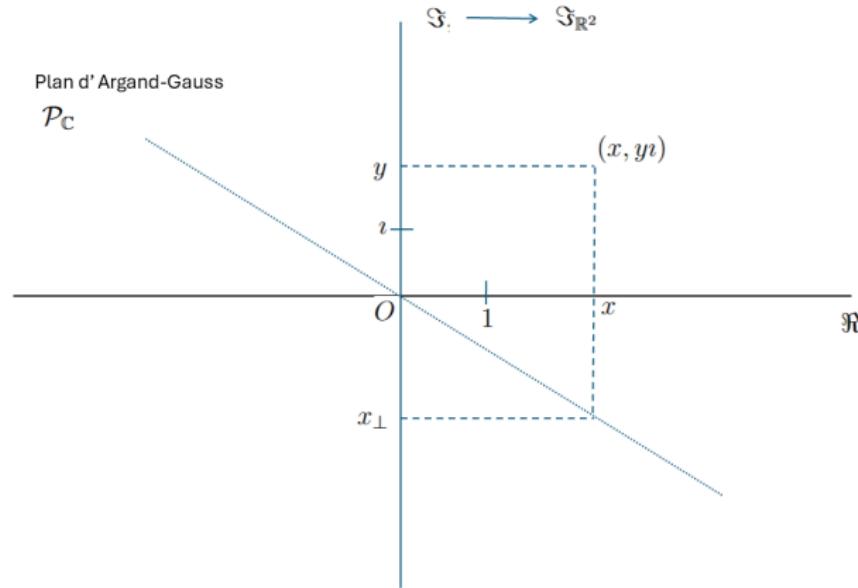
$\forall z \in \mathbb{C}$ 

Figure – Deconstruction

 $\forall z, z = x + iy$

A base on $NE(\mathcal{P}_{\mathbb{C}})$ with one and only one vector

$$z = x + iy$$

$$\begin{aligned} z &= -x \cdot (i)^2 + y \cdot i \\ &= [-xi + y]i \\ &= [x_{\perp} + y]i. \end{aligned}$$

NE is the side North-East, which is a space of dimension 2. But we have a vectorial space of dimension 1.

Let the functional equation $z^2(\phi) = z(2\phi)$. The solution is $e^{\alpha\phi}$. So in the field \mathbb{C} , we consider the solution on \mathcal{U}_1 , we have $e^{\alpha\phi^2} = \cos(2\phi) + i\sin(2\phi)$. With the derivation, and the case $\phi = 0$, we find $\alpha = i$.

Let $\theta = 2\phi$, then $ie^{i\theta} = i^2 \sin \theta + i \cos \theta$.

$$e^{i\theta} = \cos \theta + i \sin \theta.$$

Complex theory

Genvrin

Complex numbers \mathbb{C}

Complex numbers from Hamilton

A base with one and only one vector

The complex exponential

Deconstruction

An operator

Construction of \mathbb{z}

$\mathcal{P}_c \rightarrow 0$

$0 \rightarrow \mathcal{P}_c$

Deconstruction of $\mathcal{P}_{\mathbb{R}^2}$

Definition (Operator)

An operator is acting on a vectorial space to define another vectorial space.

$RV = \lambda V$ with $R = -i$ and $V = (1, 0)_{\Delta_y}$. $\lambda = -i$. Thus, $-iV = (0, 1)$. Where $(0, 1) = i$. We observe that λ is not real.

The vectorial space $\mathfrak{S} = \Delta_y^\perp$ is a distortion of the vectorial space Δ_y by the action of the operator R .

Let r an operator $\text{Rot}(O, \frac{\pi}{2})$. We apply the transformation $r^2 = r \circ r$ on Δ_x . Then,

$$r \circ r(1) = r^2(1, 0) = -(1, 0) \Leftrightarrow r^2(1, 0) = -(1, 0) \Leftrightarrow r^2 = -1.$$

Hence r^2 is a number, a fortiori r is a number.

We have $r^2 = (-1, 0)_{\Delta_x} = (1, 0)_{\Delta_y}$. r is a number such as

$r^2 = -1$, and a rotation $\text{Rot}(O, \frac{\pi}{2})$. So

$$r^{-1} \circ r^2 = r \Leftrightarrow r = r^{-1}(-1, 0)_{\Delta_x} = r^{-1}(1, 0)_{\Delta_y} = (0, 1)_{\Delta_y^\perp}.$$

We deduce $r = (0, 1)$.

Theorem

\imath is a rotate operator $i(O, \frac{\pi}{2})$.

Let $\mathcal{P}_{\mathbb{C}}|z = x + iy$. We apply a rotation $Rot(O, \frac{\pi}{2})$ to each y of \mathfrak{I} .

$$\begin{aligned} i : \mathfrak{I} &\rightarrow \Delta y \\ y &\mapsto iy = Rot(O, \frac{\pi}{2})[y] \end{aligned}$$

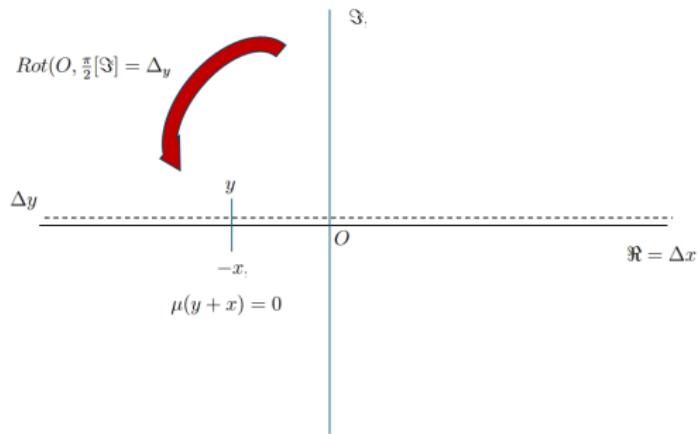


Figure – Deconstruction

We are starting from $\Delta_{x+y} = \Delta_x \cup \Delta_y$ such as

$$\mu_{\Delta_x}^* + \mu_{\Delta_y}^* = -x + y = 0.$$

We notice that $y \mapsto -y$, We are applying a rotate

$$r^2 = \text{rot}(o, \frac{\pi}{2}) \circ \text{rot}(o, \frac{\pi}{2})[y] = -y, \text{ hence}$$

$r^2(y) = -y \Leftrightarrow r^2 = -1$. So $\exists r$ as a rotate and a number.

Furthermore $y = -r^2y = -r(ry) = \text{rot}(O, \frac{\pi}{2})[ry] = \Im$.

Thus, $0 \rightarrow \mathcal{P}_{\mathbb{C}}$.

So $r = r^{-1}(-1)$. Let's take r as a number on the left side of the equation, and rotate on the right side of the equation. We have $r(1, 0)_{\Delta y} = r$, and $-Rot(O, -\frac{\pi}{2})[(1, 0)]_{\Delta y} = (0, -1)_{\Delta y^\perp}$. Thus $0 \rightarrow \mathcal{P}_{\mathbb{C}}^*$. As the conjugate map : $\mathcal{P}_{\mathbb{C}}^* = 0$ then $\mathcal{P}_{\mathbb{C}}^{*^*} = 0^* = 0$.

Theorem

$$\mathcal{P}_{\mathbb{C}} = 0.$$

In $\mathcal{P}_{\mathbb{C}}$, $e^{i\theta} \circ e^{i\phi} = e^{i(\theta+\phi)} = e^{i\theta} \times e^{i\phi}$. So we find an equivalent result in C_1 :

$$Rot(O, \theta) \circ Rot(O, \phi) = Rot(O, \theta) \times Rot(O, \phi).$$

Then $Rot(O, \phi)[e_1] = \cos \phi e_1 + \sin \phi e_2 \Rightarrow Rot(O, 2\phi)[e_1] = Rot(O, \phi) \circ Rot(O, \phi)[e_1] = (\cos \phi e_1 + \sin \phi e_2)^2$.

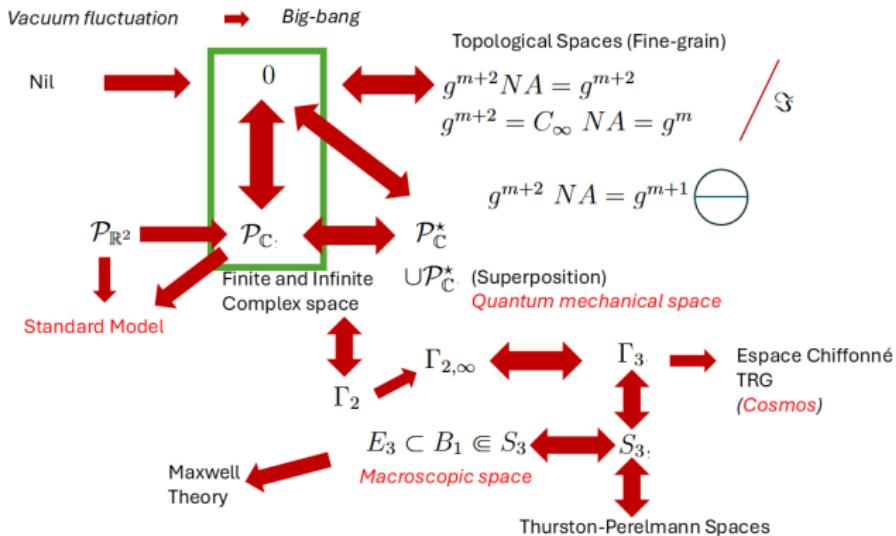
Pour $\phi = \frac{\pi}{2}$, $Rot(O, \frac{\pi}{2} + \frac{\pi}{2}) = e_2^2 = Rot(O, \pi) = -1$.

$$e_2^2 = -1.$$

Theorem

The real map $\mathcal{P}_{\mathbb{R}^2}$ links to the complex map $\mathcal{P}_{\mathbb{C}}$.

Minimalist shape of Physical Spaces
20 to 25 kind of spaces

Figure – \mathcal{F} . Transformation