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Analyse
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Mauvaise interprétation de la courbe en cloche ou Gaussienne

Origine
Gauss définit la loi normale comme une loi des erreurs
d’observations.

A.Fuchs : ”En 1809, Carl Friedrich Gauss assimile des erreurs
d’observation en astronomie à la courbe, dite des erreurs, de la
densité d’une loi normale”.

Dangers
Une distribution d’observations quelconque n’est pas forcément
une courbe en cloche (faire un test de normalité).

Ce n’est pas parce que la moyenne arithmétique converge vers
la moyenne par la Loi des Grands Nombres, que les écarts par
rapport à la moyenne sont des erreurs.
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Définitions et But

Statistique : Méthodes mathématiques pour découvrir des
propriétés et relations entre des populations à partir
d’échantillons.

Inférence : On appelle inférence une proposition issue d’un
raisonnement logique.

Statistique inférentielle
Saporta : ”Son but est d’étendre les propriétés constatées sur
l’échantillon à la population toute entière et de valider ou
d’infirmer des hypothèses formulées après une phase
exploratoire”.
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Un théorème de densité

Theorem
La densité d’une variable aléatoire vaut un.

C’est l’aire délimitée par la courbe et l’axe des abscisses.
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Figure: Lissage d’une courbe expérimentale
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La courbe normale

Theorem
Une fonction de Laplace-Gauss décrit une variable aléatoire.

Soit une loi normale centrée et réduite, alors elle est d’équation
f(x) = 1√

2π e
x2
2 . Montrons que sa densité est unitaire.

Autrement dit :
∫ +∞
−∞

1√
2π e−

1
2 x2dx = 1.
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La courbe normale
Proof.
On remarque que f est symétrique par rapport à (y′Oy), de telle
sorte que f(x) = f(−x). Posons I =

∫ +∞
−∞ e

x2
2 dx. Par le théorème

de Fubini,
J2 =

∫ +∞
−∞ e

x2
2 dx

∫ +∞
−∞ e

y2
2 dy =

∫ +∞
−∞

∫ +∞
−∞ e−

(x2+y2)
2 dxdy. On

procède à un changement de variables, on passe en coordonnées
polaires (x, y) 7→ (φ, r). Alors φ est définie sur [0; 2π[, et r sur
[0; +∞[. On a r2 = x2 + y2. Et d(−1

2 r2) = rdr = rd(−r).
Comme f est symétrique, I et I2 le sont aussi. D’où d(−r) = dr.
Alors I =

∫ 2π
0 dφ

∫ +∞
0 re

−1
2 r2dr.

Posons J =
∫ +∞

0 re
−1
2 r2dr = −

∫ +∞
0 −1

2 × 2re
−1
2 r2dr =

−
∫ +∞

0 d(exp ◦ −1
2 r2) = −[e−

1
2 r2

]+∞
0 = 1. D’où

I2 = 2π ⇔ I =
√

2π. En conséquences :∫ +∞
−∞

1√
2π e−

1
2 x2dx = 1.
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Statistisques
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Tests d’hypothèses

Soient deux estimateurs d’une expérience aléatoire :
I L’hypothèse nulle H0 suppose qu’il n’y a pas de différence

entre ces deux estimateurs.
I Le rejet de l’hypothèse nulle H0 montre une différence

entre ces deux estimateurs.
Il y a deux risques d’erreur :
I L’erreur de type I (ou alpha) qui consiste à dire qu’il y a

un rejet de l’hypothèse nulle, sans avoir une différence
significative supportée par une p-value.

I L’erreur de type II (ou beta) , qui consiste à dire qu’il n’y
a pas de différence significative, par manque de puissance
du test.
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Interprétation de la p-value

Figure: Origine de la p-value.

Pour une p-value de 0.05
Pr

(
|µ2 − µ1| > µ1 + 2σ1

)
< 0.05
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Limite des erreurs de type II

Les erreurs de type II s’appuient sur un écart-type qui pourrait
tendre vers zéro, ce qui est faux dans sa généralité. Nous allons
montrer que l’écart-type d’une série converge, sans forcément
tendre vers zéro.
Ceci est particulièrement vrai si la variable aléatoire suit une
distribution de Poisson.
Nécessité de trouver un indicateur d’arrêt d’une inclusion de cas
dans une étude.
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Distribution de Poisson
D’après D.Raupp ”De l’extinction des espèces”, la plupart des
distributions de la nature sont des lois des Poisson .

Figure: Les distributions de Poisson.
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Expression de la variance

Soit une série de données (xi)1≤i≤n. On note x la moyenne
arithmétique, xq =

∑n
i=1

x2
i

n la moyenne quadratique, et on
appelle Vn =

∑n
i=1

(xi−x)2

n la variance.
Montrons que la variance ne converge pas systématiquement
vers zéro.

Montrons tout d’abord que (Vn) converge.
Soit Vn+1 =

∑n+1
i=1

(xi−x)2

n =
∑n

i=1
(xi−x)2

n × n
n+1 + (xn+1−x)2

n+1 =

Vn × 1
1+ 1

n
+ (xn+1−x)2

n+1 .
Comme (xi)1≤i≤n est bornée, lorsque n tend vers l’infini,
l’expression de la variance Vn+1 → Vn ⇔ Vn+1 − Vn → 0.
Donc, (Vi)1≤i≤n est convergente vers une valeur réelle positive.
En conséquence l’écart-type (σi)1≤i≤n =

√
Vi est convergent.
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Condition nécessaire

Montrons que l’expression de (Vi)1≤i≤n ne converge pas
systématiquement vers zéro. Soit
Vn =

∑n
i=1

(xi−x)2

n = 1
n
∑n

i=1(x2
i − 2xxi + x2) =∑n

i=1
x2

i
n − 2x

∑n
i=1

xi
n + x2 = xq − 2x x + x2 = xq − x2. Donc,

une condition nécessaire pour que la variance converge vers zéro
est que la moyenne quadratique vaut la moyenne arithmétique
au carré.
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D’un contre-exemple vers un cas de base

Considérons un nombre pair de données. On suppose que
xi = Sup pour la moitié des données et xi = Inf pour l’autre
moitié (pour maximiser la variance). Alors x = 1

2(Sup + Inf),

tandis que
√

xq =

√
n(Sup2+Inf2)

2
n .

En élevant au carré de part et d’autre, et en simplifiant les
expressions. Il vient 1

4Sup2 + 1
4 Inf2 + 1

2 × Sup × Inf =
1
2Sup2 + 1

2 Inf2 ⇔ Sup × Inf = 1
4Sup2 + 1

4 Inf2, ce qui est
manifestement faux pour une multitude de cas.

On conclut que la variance et l’écart-type ne convergent pas
systématiquement vers zéro.
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Figure: Exemple d’une distribution du cas de base.

Slide 18/24 | Éléments de satistiques | Hugues GENVRIN | Décembre 2025



Quand stopper une inclusion de cas ?
Heuristique

On ne sait pas calculer la puissance d’un test, nécessaire quelle
que soit la courbe. Il faut donc utiliser une heuristique pour
arrêter l’inclusion de cas.

Lorsque le rapport de la variance Vn
V2n

≥ 0.95. Où n renseigne le
nombre de cas.
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Probabilité baysésienne
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Généralisation de la loi de Bayes

Figure: Preuve de la loi de Bayes.

D’où :
Pr

(
(∪Ai) ∩ (∪Bj)

)
= Pr(∪n

i=1Ai| ∪m
j=1 Bj)× Pr(∪m

j=1Bj) (1)

=
n∑

i=1

m∑
j=1

Pr(Ai|Bj)× Pr(Bj) (2)

= Pr(∪m
j=1Bj| ∪n

i=1 Ai)× Pr(∪n
i=1Ai) (3)

=
n∑

i=1

m∑
j=1

Pr(Bj|Ai)× Pr(Ai) (4)
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Causes et Effet

Soit (Cj)1≤j≤n un ensemble de causes, et Ci une cause parmi les
n causes potentielles. On a Ci qui signifie l’ensemble des causes
complémentaires. On appelle E l’effet généré par les causes (Cj).

Pr(Ci|E) =
Pr(E|Ci)× Pr(Ci)

Pr(E)
; un cas pratique : Pr(E) = 1

=
Pr(E|Ci)× Pr(Ci)

Pr(E|Ci)× Pr(Ci) + Pr(E|Ci)× Pr(Ci)

=
Pr(E|Ci)× Pr(Ci)

Pr(E|Ci)× Pr(Ci) + Pr(E|Ci)× (1 − Pr(Ci))

Par argument de symétrie :
Pr(E|Ci) =

Pr(Ci|E)×Pr(E)

Pr(Ci|E)×Pr(E)+Pr(Ci|E)×(1−Pr(E))
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Expression de la probabilité de Laplace
Principe de raison insuffisante

Nous allons alors appliquer une probabilité inverse pour Ĥd, qui
sera une probabilité conditionnelle. En conséquence, la
composition sera aussi définie par une probabilité bayésienne.
Voici les termes engagés :
I ∆Ed =

∑n
i=1 Pri[signe i|fait]× I

(
fait

)
I ∆Ec =

∑m
j=1 Prj[fait|signe j]× I

(
signe j

)
I ∆E|i

d = Pri[signe i|fait]× I
(
fait

)
I ∆E|j

c = Prj[fait|signe j]× I
(
signe j

)
I est le sens relatif à l’argument. On peut développer les
probabilités bayésiennes et considérer les restrictions des
espérances E |. Pour E |ki

d , on définit la restriction de l’espérance
de l’unité ki pour la décomposition.
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