

Fine grain Topology and Set theory

Hugues GENVRIN

03/08/2025

Definitions

Definition

$C_k \forall k \in \mathbb{Z}$, we assign $C_k(O_k, \rho_k)$, with $O_k(-2^k \rho_0, 0)$ and $\rho_k = 2^k \rho_0$.

Definition

$B_k \forall k \in \mathbb{Z}$, B_k is a form supported by C_k . The origin is O , and the extremity is $S_k \notin B_k$.

1. if $(k > 0)$ As we can make a recovery of the circle C_k many times as a loop.
2. if $(k \leq 0)$ we are drawing an arc of a circle.

Basic case

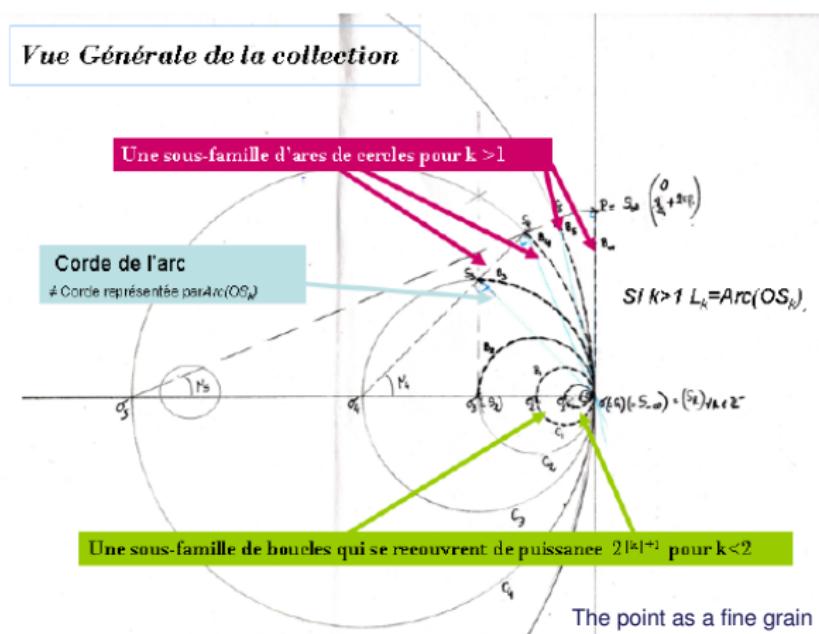
We want to determinate $(M_k) \in \mathcal{P}$ as $\mathbf{O}_k \mathbf{M}_k = \cos(\theta_k) \mathbf{O}_k \mathbf{T}_k$,
where $\theta_k = \widehat{OO_k T_k}$.

Hence, $\mathbf{O}_{k-1} \mathbf{M}_k = \rho_{k-1} (\cos 2\theta_k \mathbf{i} + \sin 2\theta_k \mathbf{j})$. Let $\theta'_k = 2\theta_k$. The relationship between the definition set of θ_k and θ'_k is $[0; 2\pi[\rightarrow [0; 4\pi[$.

So M_k will describe C_{k-1} sweeps two times.

$O_{2^{n_\infty}}$

if we are applying the basic case for all $(C_\ell)_{\ell \leq 1}$, we draw the point O sweeps 2^{n_∞} .



Fine-grain topology

Thus, the previous result is showing us a problem with the axiomatic from Euclide :

" A point is that which has no part".

We will define another approach of the point with the fine grain topology.

Structure

- ▶ Scale.
- ▶ Locus.
- ▶ Fine-grain.
- ▶ NA (agraindissement level).
- ▶ Cardinal : #.
- ▶ Measure of the lenght or width : μ .

Power of the continuum

$$\#(\mathcal{C}) = 2^{n_\infty}$$

Reny's Information

Variation of the size of the grain

Let's call N the number of symbol of a system Ω .

$$\mathcal{I} = \log_2(N)$$

We can apply to the variation of the size of the grain.

$$g^{m+1} = 2^{n_\infty} g^m$$

Fractal of the grain

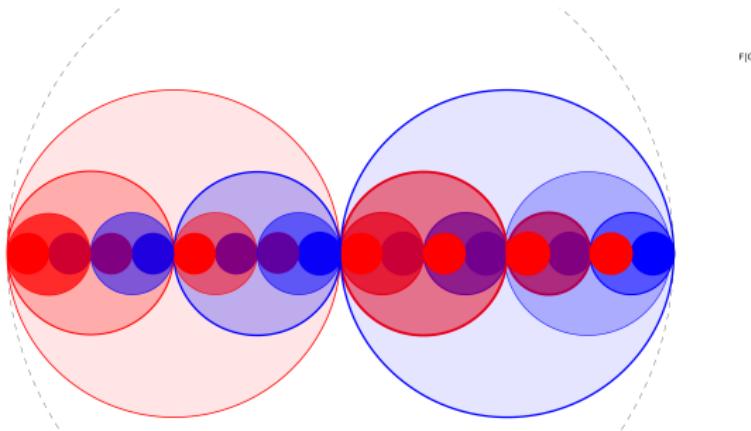


Figure: Fractal.

$$\dim = -\frac{\ln(n_\infty)}{\ln 2}$$

Grain and Map's dilation

$$g_{di}^m = g^{m+1}$$

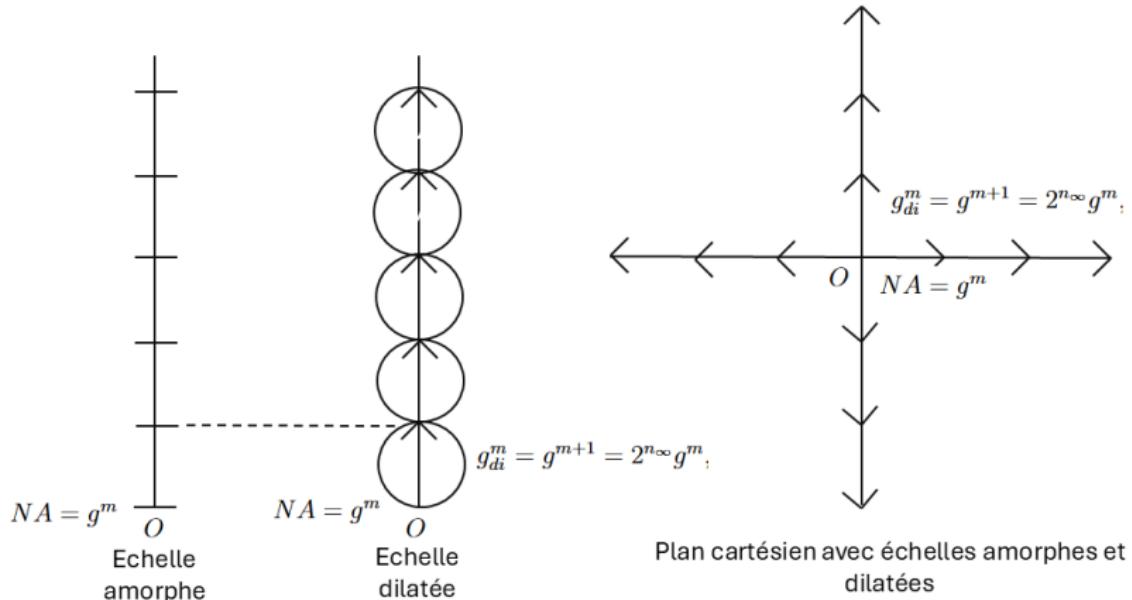
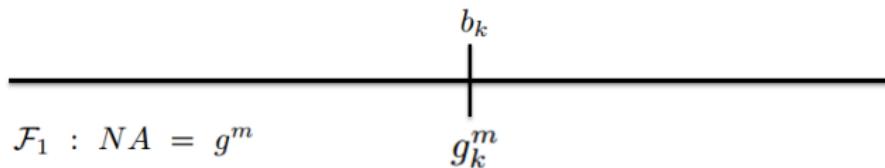
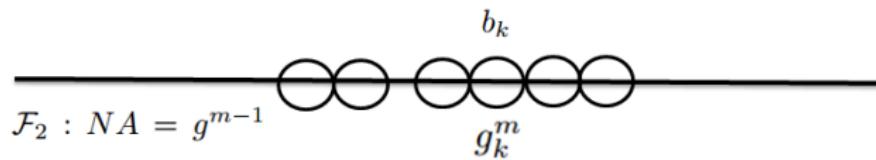


Figure: Dilations.

Enumerability of the real and Continuum hypothesis



Axiom of choice

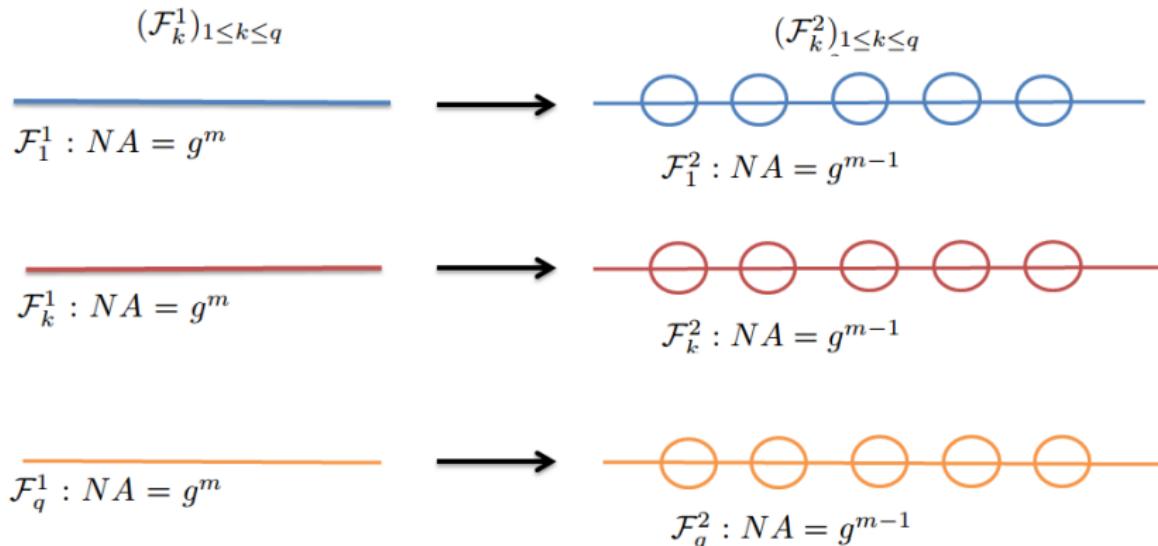


Figure: Axiom of choice.

Function of choice

$$(\mathcal{F}_k^1)_{1 \leq k \leq q}$$

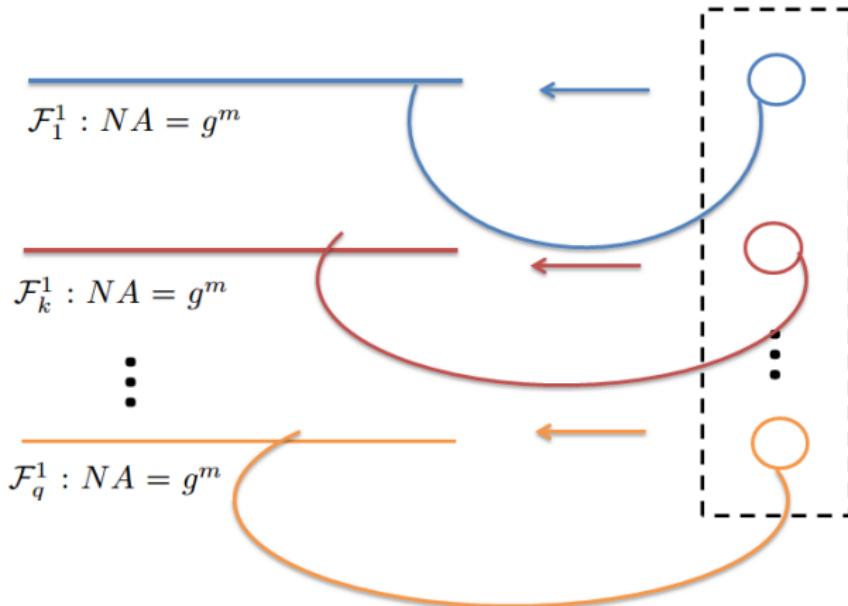
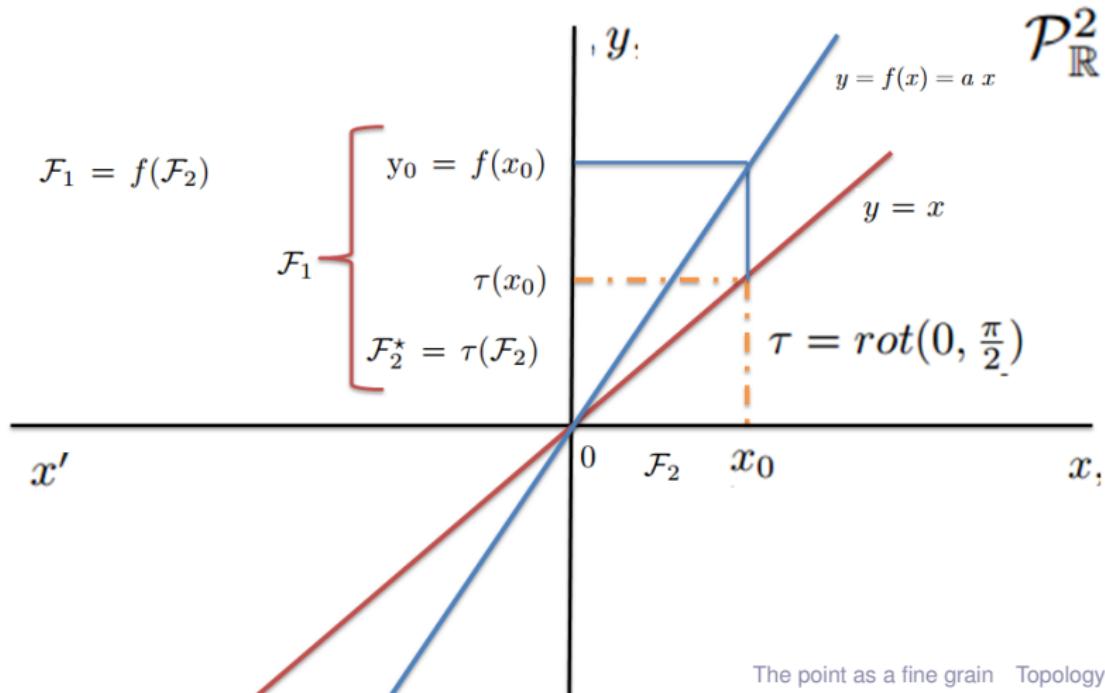


Figure: Function of choice. The point as a fine grain Topology Set theory

Paradox of reflexivity

Proper part is not taller than partial part and Dedekind theorem for infinite set is false



Encapsulation

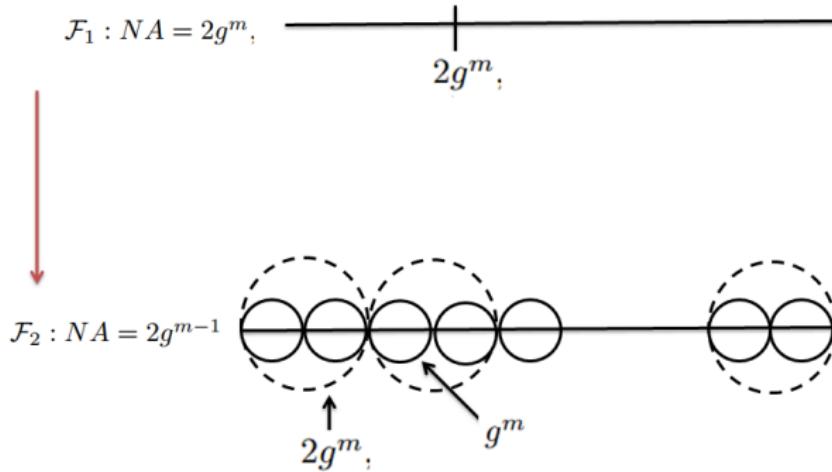


Figure: Encapsulation of the grain.

Application

The encapsulation of two radial grain is involving a grain with concentric dilation. That's allow us to assign a kind of grain which is equal to a transverse section of the fibration of S^3 .

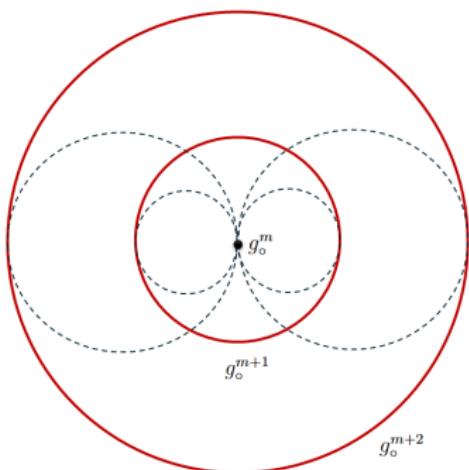


Figure: Concentric dilation.

Complex grain

As we work in $\mathcal{P}_{\mathbb{C}}^*$, we are leading to identify $\frac{1}{2}g_{\circ}^{m+1}$ and $e^{i\theta}$ for $\theta \in [0; 2\pi[$.

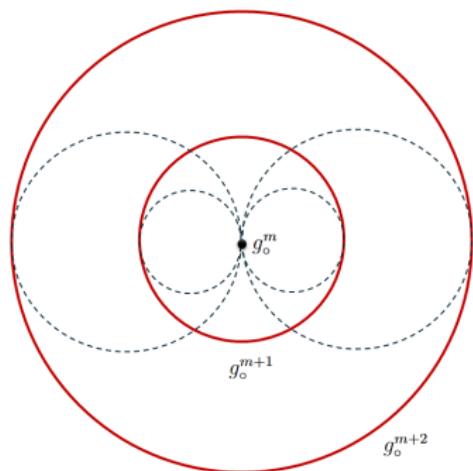


Figure: Concentric dilation.

Application

The infinite circle and design of a square grain $g_{\square}^{m+2} = 4g_{\circ}^{m+2}$

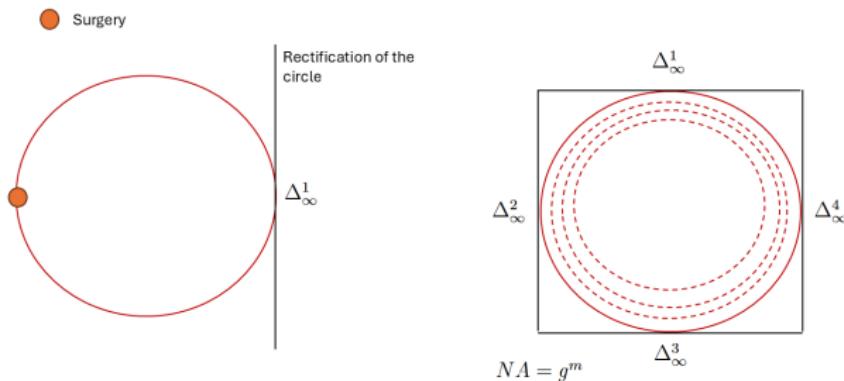


Figure: Square grain.

With $NA = g^m$, $4g_{\circ}^{m+2} \simeq g_{\square}^{m+2}$, $4g_{\circ}^{m+1} \neq g_{\square}^{m+1}$, $4g_{\circ}^m = g_{\square}^m$.

Dedekind's cut

An impossible construction

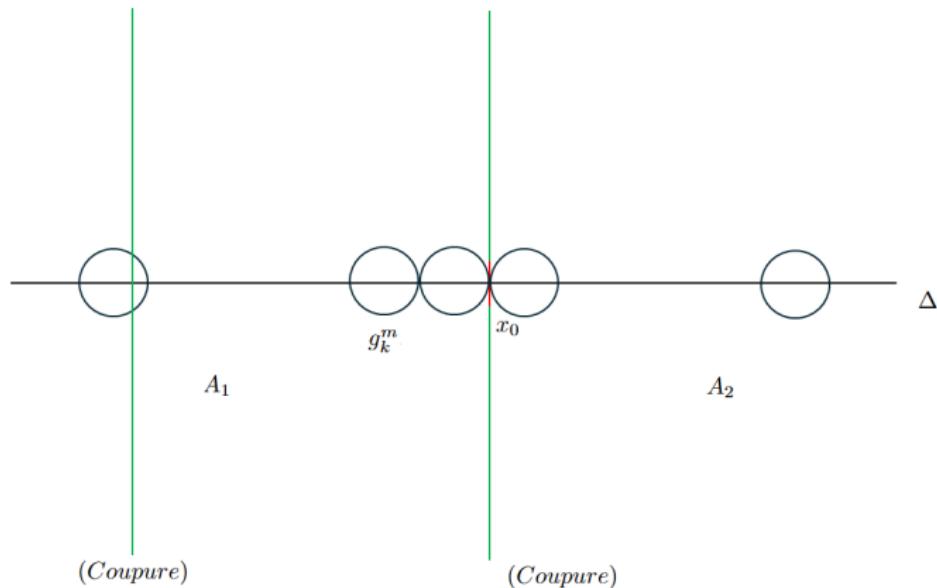


Figure: Dedekind's cut The point as a fine grain Topology Set theory

Generalization of Dedekind's cut

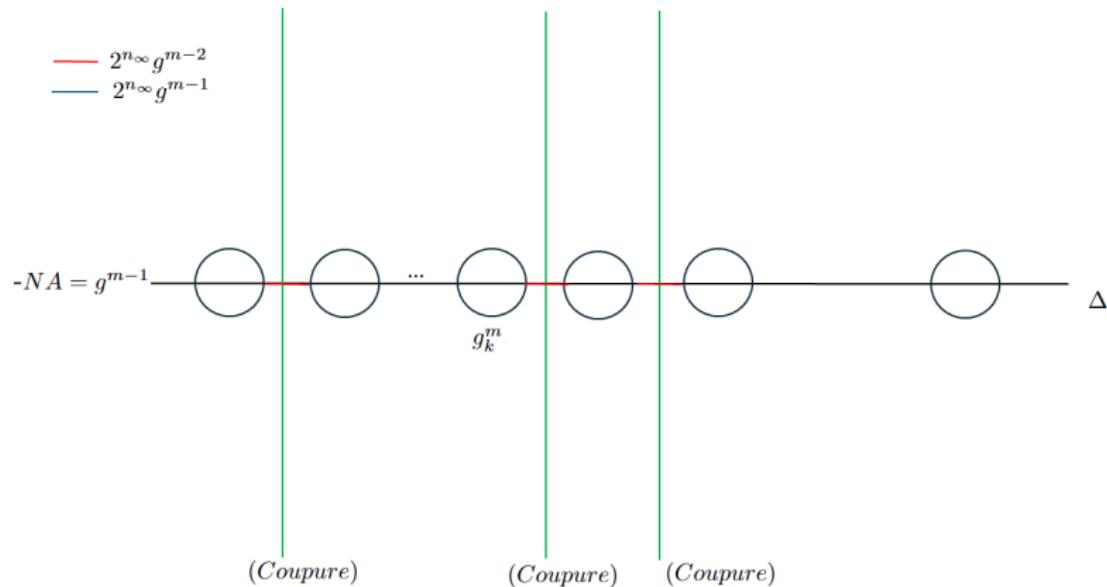


Figure: Dedekind's cut.

Back up

The point as a fine grain

Definitions

Basic case

Topology

The fine grain

Power of the continuum

Reny's information

Applications

Set theory

Enumerability of real and Continuum hypothesis

Axiom and function of choice

Paradox of reflexivity

Encapsulation

Individuation of real by Dedekind's cut

Dedekind cut generalized