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Logic Connectors Contraposition Set Logic Coherence between formules Cretan Paradox

Conjugate of privation

(A ⇔ B) \ (A ⇒ B) =
(
(A⇒B)∧(A⇐B)

)
\(A⇒B)

=
(
(A ⇐ B) ∨ (A ⇒ B)

)
\(A ⇐ B).

(A ⇔ B) \ (A ⇒ B) = A ⇐ B

= A ⇒ B.

(1)

\ = \
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Conjugate of imply symbol
Relation of equivalence

Let R =⇔ with the universe ΩR = {0,1} such as 0R 1 et 1R0,
où x designates the conjugate of x.

1. 0R0 et 1R1, thus R is reflexive.
2. For the reason that 0R1 and 1R0, so R is symmetric.
3. If aRb et bRc, then aRc. Per example 0R0, et

0R1 ⇒ 0R0. We have only two elements in ΩR, thus the
relation is obvious.

We deduce that R is an equivalence relation : R≡.
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Conjugate of imply symbol
Conjugate of equivalence symbol

We notice that :

a R≡ b = a R≡ b (2)

Hence (0 R≡ 0) = (1 R≡ 1), such that 1 R 1. Then, it’s involving
that R≡ = R≡, which is equivalent to write : ⇔ =⇔.
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Conjugate of imply symbol

Let Ω′ = {⇐,⇒}, then :

⇔ = (⇐ ∧ ⇒)

is implying ⇔ = ⇐ ∧ ⇒
= ⇐∧⇒
= ⇐∨⇒

As ⇔= ⇔, then : ⇔ = ⇐∨⇒.

(3)

Thus :
⇔ = (⇐ ∧ ⇒)

= (⇐∧⇒)

cause (⇐ ∧ ⇒) = (⇐∨⇒)

(4)

Consequently : for a none exclusive either, let ⇐= ⇐∧ ⇒= ⇒;
or ⇐= ⇒∧ ⇒= ⇐.
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Conjugate of imply symbol
Order relation

Soient O⇒ et O⇐, two relations on Ω′ = {−1,0, 1}. With 0 = 0,
1 = −1.

1. 0O⇒0,−1O⇒ − 1 et 1O⇒1. Thus O⇒ is reflexive.
2. 0O⇒1 et −1O⇒ − 0 is involving −1O⇒0. Hence, the

relation is anti-symmetric.
3. On another hand, −1O⇒0 and 0O⇒1 which is involving

−1O⇒1.So the relation O⇒ is transitive.
We deduce O⇒ is an order relation (generic, so un-strict).By an
analogous reasoning, we have been to believe that O⇐is too an
order relation.
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Conjugate of imply symbol
In term of symbol

We have O⇒ et O⇐ which are conjugates, in term of symbol :{
O⇒ = O⇐ = O⇐
O⇐ = O⇒ = O⇒.

Hence, in terms of connectors symbols :{
⇒ = ⇐
⇐ = ⇒.
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Conjugate of imply symbol

⇐ =⇒ et ⇒ =⇐
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Contraposition

A ⇒ B, implies A ⇒ B = A ⇐ B.

Theorem
A ⇒ B ⇔ B ⇒ A.

Corollaire
If A ⇒ B = V, then A ⇒ B = F ⇔ A ⇐ B = F.

Corollaire
If A ⇒ B = F, then A ⇒ B = V ⇔ A ⇐ B = V.
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Set Logic

Let

A \ B = B

A \ B = A \ B
(5)

If we have \ = \, then A \ B = A \ B = 0.

As B ̸= 0. We conclude :

\ ̸= \.
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A formule

Definition (Chaîne formelle)
A formal chain is a linguistinc form. It’s an expression of a
formal language.

Definition (Formule : Fr)
A formule Fr is a broadly expression of a relationship, between
a formal chain and arguments which will return values.
Let Fr(x1, . . . , xn) = (y1, . . . , ym). Fr a boolean formule, n∞ ou
2n∞ arguments. Fr| is a restriction, et par Fr⋆, is a
prolongement.
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De l’infini potentiel vers l’infini actuel

{
If Fr(x 7→ 2n∞) = F, then Fr⋆(x = 2n∞) = F
If Fr(x 7→ n∞) = F, then Fr⋆(x = n∞) = F

Theorem
If a formule is wrong in the context of a potential infinite, it’s
wrong in the context of an actual infinite.
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From actual infinite towards potential infinite

{
If Fr(x = 2n∞) = V, then Fr|(x 7→ 2n∞) = V
If Fr(x = n∞) = V, then Fr|(x 7→ n∞) = V

Let Fr|(x 7→ 2n∞) = F ⇒ Fr|⋆(x = 2n∞) = F.

Theorem
If a formule is true in the context of an actual infinite, it’s true in
the context of a potential infinite.
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Formulation of the Cretan Paradox

The cretan philosopher Epimenides is at the origin of the cretan
paradox, wich has been revealed to the VI° century before J-C.
Here is how it was submited.

1. All cretans are liars.
2. Epimenides the cretan tells that he is a liar.
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We arrive to the conclusion : Epimenides lies and does not lie.
We will define the referents joined to the statements. The
referent is a fonction wich returns syntaxic items in natural
language. Hence, for the statements system, we will have three
referents.

1. r1=Cretan.
2. r2=Epimenide.
3. r3=Liar.

The last one is for the conclusion.
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Those statements will be put in a matching relation by R. We
define by r3 the conjugate referent (opposition) as : not a liar.
We also indentify three states joined to the propositions and to
the inferences.

1. ST1 = ∀r1, r1Rr3.
2. ST2 = ∃r2, r2Rr1.
3. ST3 = ∃r2, r2Rr3 ∧ r2Rr3.
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Undecidabilty

Definition (Undecidability)
A theory is called undecidable, if we can’t show that we have
either the statement p, or the statement p̄.
We identify three kinds of undecidability :

1. The syntaxic undecidability (Ladrière).
2. The power undecidability (the NNT in an experimental

study).
3. The entropic undecidability (which contains disorder and

heterogeneity).
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Undecidabilty

As a deduction on ST3, we have Epimenide who is a liar, and
Epimenide who is not a liar. We have p ∧ p̄ wich lead to have an
entropic undecidability of second specie.

Definition
If we show a statement is p and p̄, the law of contradiction leads
to a second specie of entropic undecidability.

Logic Connectors Contraposition Set Logic Coherence between formules Cretan Paradox

18/ 18


	Logic Connectors
	Privation
	Conjugate of imply symbol

	Contraposition
	Set Logic
	Coherence between formules
	Cretan Paradox

