

Logique

Hugues GENVRIN

03/12/2025

Conjugate of privation

$$\begin{aligned}\overline{(A \Leftrightarrow B) \setminus (A \Rightarrow B)} &= ((\bar{A} \Rightarrow \bar{B}) \wedge (\bar{A} \Leftarrow \bar{B})) \bar{\setminus} (\bar{A} \Rightarrow \bar{B}) \\ &= ((\bar{A} \Leftarrow \bar{B}) \vee (\bar{A} \Rightarrow \bar{B})) \bar{\setminus} (\bar{A} \Leftarrow \bar{B}). \quad (1) \\ \overline{(A \Leftrightarrow B) \setminus (A \Rightarrow B)} &= \overline{\bar{A} \Leftarrow \bar{B}} \\ &= \bar{A} \Rightarrow \bar{B}.\end{aligned}$$

$$\bar{\setminus} = \setminus$$

Conjugate of imply symbol

Relation of equivalence

Let $\mathcal{R} = \Leftrightarrow$ with the universe $\Omega_{\mathcal{R}} = \{0, 1\}$ such as $\bar{0} \mathcal{R} 1$ et $\bar{1} \mathcal{R} 0$, où \bar{x} designates the conjugate of x .

1. $0 \mathcal{R} 0$ et $1 \mathcal{R} 1$, thus \mathcal{R} is reflexive.
2. For the reason that $0 \mathcal{R} 1$ and $1 \mathcal{R} 0$, so \mathcal{R} is symmetric.
3. If $a \mathcal{R} b$ et $b \mathcal{R} c$, then $a \mathcal{R} c$. Per example $0 \mathcal{R} 0$, et $0 \mathcal{R} \bar{1} \Rightarrow 0 \mathcal{R} 0$. We have only two elements in $\Omega_{\mathcal{R}}$, thus the relation is obvious.

We deduce that \mathcal{R} is an equivalence relation : \mathcal{R}_{\equiv} .

Conjugate of imply symbol

Conjugate of equivalence symbol

We notice that :

$$\overline{a \mathcal{R}_\equiv b} = \bar{a} \overline{\mathcal{R}_\equiv} \bar{b} \quad (2)$$

Hence $(\bar{0} \overline{\mathcal{R}_\equiv} \bar{0}) = (1 \overline{\mathcal{R}_\equiv} 1)$, such that $1 \mathcal{R} 1$. Then, it's involving that $\mathcal{R}_\equiv = \overline{\mathcal{R}_\equiv}$, which is equivalent to write : $\Leftrightarrow = \Leftrightarrow$.

Conjugate of imply symbol

Let $\Omega' = \{\Leftarrow, \Rightarrow\}$, then :

$$\begin{aligned}
 \Leftarrow &= (\Leftarrow \wedge \Rightarrow) \\
 \text{is implying } \Leftarrow &= \overline{\Leftarrow \wedge \Rightarrow} \\
 &= \Leftarrow \overline{\wedge} \Rightarrow \\
 &= \Leftarrow \vee \Rightarrow
 \end{aligned} \tag{3}$$

As $\Leftarrow = \Leftarrow \Rightarrow$, then : $\Leftarrow = \Leftarrow \vee \Rightarrow$.

Thus :

$$\begin{aligned}
 \Leftarrow &= (\Leftarrow \wedge \Rightarrow) \\
 &= (\Leftarrow \overline{\wedge} \Rightarrow) \\
 \text{cause } (\Leftarrow \wedge \Rightarrow) &= (\Leftarrow \vee \Rightarrow)
 \end{aligned} \tag{4}$$

Consequently : for a none exclusive either, let $\Leftarrow = \Leftarrow \wedge \Rightarrow = \Leftarrow \Rightarrow$;

or $\Leftarrow = \Leftarrow \wedge \Rightarrow = \Leftarrow \Rightarrow$.

Conjugate of imply symbol

Order relation

Soient $\mathcal{O}_{\Rightarrow}$ et \mathcal{O}_{\Leftarrow} , deux relations sur $\Omega' = \{-1, 0, 1\}$. Avec $\bar{0} = 0$, $\bar{1} = -1$.

1. $0\mathcal{O}_{\Rightarrow}0, -1\mathcal{O}_{\Rightarrow} -1$ et $1\mathcal{O}_{\Rightarrow}1$. Thus $\mathcal{O}_{\Rightarrow}$ is reflexive.
2. $0\mathcal{O}_{\Rightarrow}1$ et $-1\mathcal{O}_{\Rightarrow} -0$ is involving $-1\mathcal{O}_{\Rightarrow}0$. Hence, the relation is anti-symmetric.
3. On another hand, $-1\mathcal{O}_{\Rightarrow}0$ and $0\mathcal{O}_{\Rightarrow}1$ which is involving $-1\mathcal{O}_{\Rightarrow}1$. So the relation $\mathcal{O}_{\Rightarrow}$ is transitive.

We deduce $\mathcal{O}_{\Rightarrow}$ is an order relation (generic, so un-strict). By an analogous reasoning, we have been to believe that \mathcal{O}_{\Leftarrow} is too an order relation.

Conjugate of imply symbol

In term of symbol

We have $\mathcal{O}_{\Rightarrow}$ et \mathcal{O}_{\Leftarrow} which are conjugates, in term of symbol :

$$\begin{cases} \mathcal{O}_{\Rightarrow} = \overline{\mathcal{O}_{\Leftarrow}} = \mathcal{O}_{\equiv} \\ \mathcal{O}_{\Leftarrow} = \overline{\mathcal{O}_{\Rightarrow}} = \mathcal{O}_{\not\Rightarrow}. \end{cases}$$

Hence, in terms of connectors symbols :

$$\begin{cases} \Rightarrow = \equiv \\ \Leftarrow = \not\Rightarrow. \end{cases}$$

Conjugate of imply symbol

$\equiv \Rightarrow$ et $\Rightarrow \equiv$

Contraposition

$A \Rightarrow B$, implies $\overline{A \Rightarrow B} = \overline{A} \Leftarrow \overline{B}$.

Theorem

$$A \Rightarrow B \Leftrightarrow \overline{B} \Rightarrow \overline{A}.$$

Corollaire

If $A \Rightarrow B = V$, then $\overline{A \Rightarrow B} = F \Leftrightarrow \overline{A} \Leftarrow \overline{B} = F$.

Corollaire

If $A \Rightarrow B = F$, then $\overline{A \Rightarrow B} = V \Leftrightarrow \overline{A} \Leftarrow \overline{B} = V$.

Set Logic

Let

$$\begin{aligned}\overline{A \setminus B} &= B \\ \overline{A \setminus B} &= \overline{A} \setminus \overline{B}\end{aligned}\tag{5}$$

If we have $\setminus = \setminus$, then $\overline{A \setminus B} = \overline{A} \setminus \overline{B} = 0$.

As $B \neq 0$. We conclude :

$$\setminus \neq \setminus.$$

A formule

Definition (Chaîne formelle)

A formal chain is a linguistic form. It's an expression of a formal language.

Definition (Formule : *Fr*)

A **formule *Fr*** is a broadly expression of a relationship, between a formal chain and arguments which will return values.

Let $Fr(x_1, \dots, x_n) = (y_1, \dots, y_m)$. *Fr* a boolean formule, n_∞ ou 2^{n_∞} arguments. Fr^l is a restriction, et par Fr^* , is a prolongement.

De l'infini potentiel vers l'infini actuel

$$\begin{cases} \text{If } Fr(x \mapsto 2^{n_\infty}) = F, \text{ then } Fr^*(x = 2^{n_\infty}) = F \\ \text{If } Fr(x \mapsto n_\infty) = F, \text{ then } Fr^*(x = n_\infty) = F \end{cases}$$

Theorem

If a formula is wrong in the context of a potential infinite, it's wrong in the context of an actual infinite.

From actual infinite towards potential infinite

$$\begin{cases} \text{If } Fr(x = 2^{n_\infty}) = V, \text{ then } Fr^|(x \mapsto 2^{n_\infty}) = V \\ \text{If } Fr(x = n_\infty) = V, \text{ then } Fr^|(x \mapsto n_\infty) = V \end{cases}$$

Let $Fr^|(x \mapsto 2^{n_\infty}) = F \Rightarrow Fr^{\star}(x = 2^{n_\infty}) = F$.

Theorem

If a formule is true in the context of an actual infinite, it's true in the context of a potential infinite.

Formulation of the Cretan Paradox

The cretan philosopher Epimenides is at the origin of the cretan paradox, which has been revealed to the VI° century before J-C. Here is how it was submitted.

1. All cretans are liars.
2. Epimenides the cretan tells that he is a liar.

We arrive to the conclusion : Epimenides lies and does not lie. We will define the referents joined to the statements. The referent is a function which returns syntactic items in natural language. Hence, for the statements system, we will have three referents.

1. r_1 =Cretan.
2. r_2 =Epimenide.
3. r_3 =Liar.

The last one is for the conclusion.

Those statements will be put in a matching relation by \mathcal{R} . We define by \bar{r}_3 the conjugate referent (opposition) as : not a liar. We also identify three states joined to the propositions and to the inferences.

1. $ST_1 = \forall r_1, r_1 \mathcal{R} r_3.$
2. $ST_2 = \exists r_2, r_2 \mathcal{R} r_1.$
3. $ST_3 = \exists r_2, r_2 \mathcal{R} r_3 \wedge r_2 \mathcal{R} \bar{r}_3.$

Undecidability

Definition (Undecidability)

A theory is called undecidable, if we can't show that we have either the statement p , or the statement \bar{p} .

We identify three kinds of undecidability :

1. The syntactic undecidability (Ladrière).
2. The power undecidability (the NNT in an experimental study).
3. The entropic undecidability (which contains disorder and heterogeneity).

Undecidability

As a deduction on ST_3 , we have Epimenide who is a liar, and Epimenide who is not a liar. We have $p \wedge \bar{p}$ which lead to have an entropic undecidability of second specie.

Definition

If we show a statement is p and \bar{p} , the law of contradiction leads to a second specie of entropic undecidability.