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L’intégration transfinie suivant la méthode de
Riemann

On a
∫ a+1
a

f (x)dx =
{∑n(a+1)

k=na
1
n
f (k

n
)
}

n+∞
qui peut

s’interpréter comme somme de termes transfinis, ou des aires
élémentaires transfinies.
On retrouve la formule qui exprime ln(2) :

ln(2) =
(

1
n
+ 1

n+1 + . . .+ 1
2n

)
n→+∞

(1)

Cela est correct dans l’infini potentiel, tout autant que dans
l’infini achevé.

ln(2) =
{

1
n
+ 1

n+1 + . . .+ 1
2n

}
n→+∞

(2)
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Autres résultats suivant cette méthode

e = { n

(n!)
1
n
}n+∞ (K.Knopp (1951)) (3)

{ (2n)!
(n!)

= (4n
e
)n}n+∞ (4)

{ (2n)!
(n!)2

= C n
2n = 4n}n+∞ (5)

Formule de Bernouilli e = lim(1 + 1
n
)nn→+∞ Barnes (1984)

(6)
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Définition du logarithme Népérien

q ∈ N , {
∑qn

k=n
1
k
= ln(q)}n+∞ (7)

{
∑n2

k=n
1
k
= ln(n)}n+∞ (8)

ζ = {1 + 1
2 + . . .+ 1

n−1 −
1

n+1 − . . .− 1
n2}n+∞ (9)
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Théorème du réarrangement de Riemann

Théorème
Si une série à termes réels est semi-convergente, alors par une
permutation de ses éléments on peut la faire tendre vers
n’importe quel réel ou même vers l’infini.

Or : ∑n+∞
k=1 uk −

∑n+∞
k=1 uσ(k) −→

∑n+∞
k=1 uσ′(k) (10)

=⇒ Les sommations doivent s’étendre dans le transfini.
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Convergence Asymptotique entre des fonctions de
puissances et des séries de puissances

(2
√
n −

∑n
k=1

1√
k
)n+∞ = ℓ (11)

ℓ = 1.4583237 . . .

( α
α−1n

α−1
α −

∑n
k=1 k

−1
α )n+∞ = ℓ′ (12)

(
∑n

k=1

√
k = 2

3n
√
n)n+∞ (13)

( 1
n

∑n
k=1

√
k ÷

∑n
k=1

1√
k
)n+∞ = 1

3 (14)
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Les fonctions ζ

On pose ζ(k) = (
∑n

i=1
1
ik
)n→+∞

1 k peut être entier - (Rationalité de ζ(k) ?)
2 k peut être réel - (Conditions de divergence ou

convergence)
3 k peut aussi être complexe - (Hypothèse de Riemann)

On pose ζ ′(k) = (
∑n

i=1
(−1)k+1

ik
)n→+∞ la série alternée de ζ(k).
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La fonction ζ(x)
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Constante de Meissel-Mertens

Soit Ak la série formée par les aires hachurées. On a∑
Ak = ln(2)− 1

2 + ln(3
2) + . . . = ln( 2×3×5×...pk

1×2×3×...pk−1
)−

∑k
i=1

1
pi

.

∑ 1
pi
− ln(ln(n))n+∞ = Cte (15)
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La constante d’Euler
1 1

n n→+∞ = 0 ou un =
1
n

converge vers zéro.
2 Comme {1, . . . , n+∞} forme un tout achevé.
3 On a donc un+∞ = 0 qui est le symétrique de n+∞. On

peut étiqueter les élément d’un continu avec l’ensemble
des parties de un.

4 Si ζ est rationnel alors ζ est constructible et ζ −
∑n+∞

i=1
1
i

est constructible en un nombre infini dénombrable
d’étapes.

5 Donc ln(n+∞) est constructible en un nombre infini
dénombrable d’étapes, par une suite de droites seules.

6 Soit, dans le cadre de l’infini potentiel, ln tendrait vers
une asymptote formée par une droite, paralléle à x ′Ox . Ce
qui est impossible

7 ζ ne peut être rationnelle.
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Résultats sur des séries de fonctions ζ entières
dans le cadre de l’infini achevé

(
∑n+∞

k=1
(−1)k−1(2π)2k

2(2k)! B2k) =
3
4 + n+∞ (16)

(
∑n+∞

k=1 ζ(2k + 1)) = 1
4 +

1
2n+∞+2 + n+∞ (17)
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Autres résultats sur des séries de fonctions ζ
entières dans le cadre de l’infini potentiel

lim(
∑n

k=1 ζ(2k + 1))n→+∞ = 1
4 + lim(n)n→+∞ (18)

lim(
∑2n

k=2
ζ(k)
n
)n→+∞ = 2 (19)

lim(
∑2n

k=2(−1)kζ(k))n→+∞ = 1
2 (20)
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Sn = 1 − 1 + 1 − 1 + . . .

En 1713, Leibnitz attribuait à cette série le résultat 1
2 par un

prolongement analytique : pour
|x | < 1, f (x) = 1 + x + x2 + x3 + . . . → 1

1−x

Sn =
∑n+∞

k=1 (−1)k+1k , alors il vient :
S2n =

∑2n+∞
k=1 (−1)k+1k =

∑n+∞
k=1 k −

∑n+∞
k=1 k = 0.
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Sn = 1 − 2 + 3 − 4 + . . .

Leibnitz attribuait à cette série le résultat 1
4 , toujours par la

méthode du un prolongement analytique : pour
|x | < 1, f (x) = 1 − 2x + 3x2 − 4x3 + . . . → 1

(1+x)2
. Se pose ici

l’impossibilité possibilité d’épuiser tous les coefficients du
polynôme.
Cependant
S2n =

∑2n+∞
k=1 (−1)k+1k = −

∑n+∞
k=1 2k +

∑n+∞−1
k=1 (2k + 1).

Soit S ′
2n =

∑2n+∞
k=1 k =

∑n+∞
k=1 2k +

∑n+∞−1
k=1 (2k + 1) ⇒∑n+∞−1

k=1 (2k + 1) =
∑2n+∞

k=1 k −
∑n+∞

k=1 2k .
On déduit alors :
S2n =

∑2n+∞
k=1 k−4

∑n+∞
k=1 k = (2n(2n+1)

2 − 4n(n+1)
2 )n+∞ = −n+∞.
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Arborescence de séries

On est conduit à un paradoxe entre les résultats par une
relation de récurrence et ceux obtenus par le passage à la
limite : Série croissante et majorée donc convergente.
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Arborescence de séries

Mêmes Conclusions...
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Divergence d’une série

La convergence asymptotique est bien plus forte que la notion
de divergence. On peut lier la première à un nombre qui n’est
pas infini (dans le sens que l’ensemble cardinal qu’il représente
ne peut générer un continu avec l’ensemble de ses parties),
mais qui n’est pas non plus fini dans le sens usuel (auquel cas
la série convergerait).
Ces nombres sont donc des nombres entiers d’une nouvelle
espèce : des entiers finis inachevés.
Cette notion est très puissante, puisqu’elle solutionne le
paradoxe précédent, tout en offrant de nouvelles perspectives
de certains résultats (Nombres premiers par exemple)
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La cohérence potentiel-achevé

Proposition
Si une suite convergente prend en l’infini (achevé) la valeur ℓ,
alors dans le cadre de l’infini potentiel, cette suite converge
vers ℓ et inversement.

On peut considérer que ce résultat est vrai si ℓ est fini ou
représente une valeur asymptotique.
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