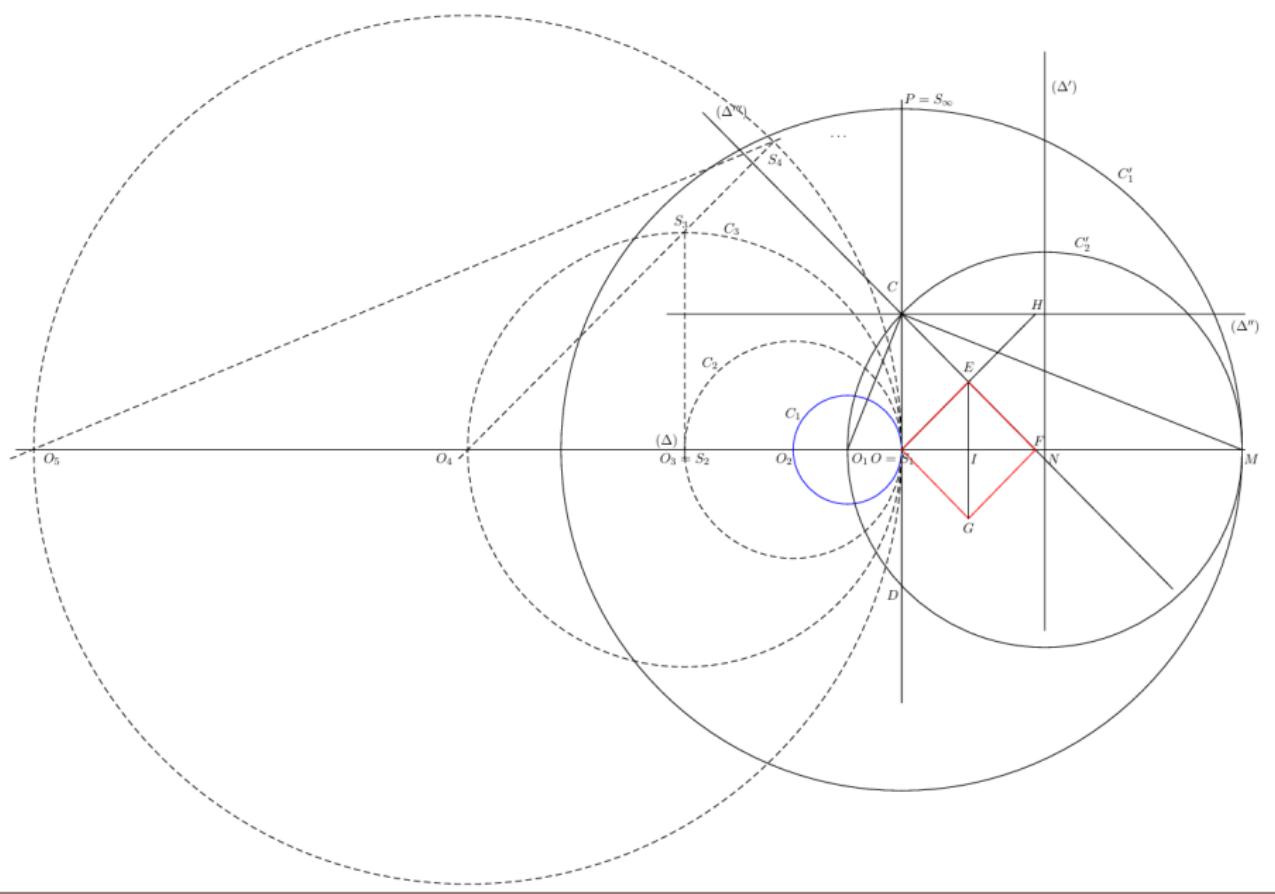


Squaring the circle

Hugues GENVRIN

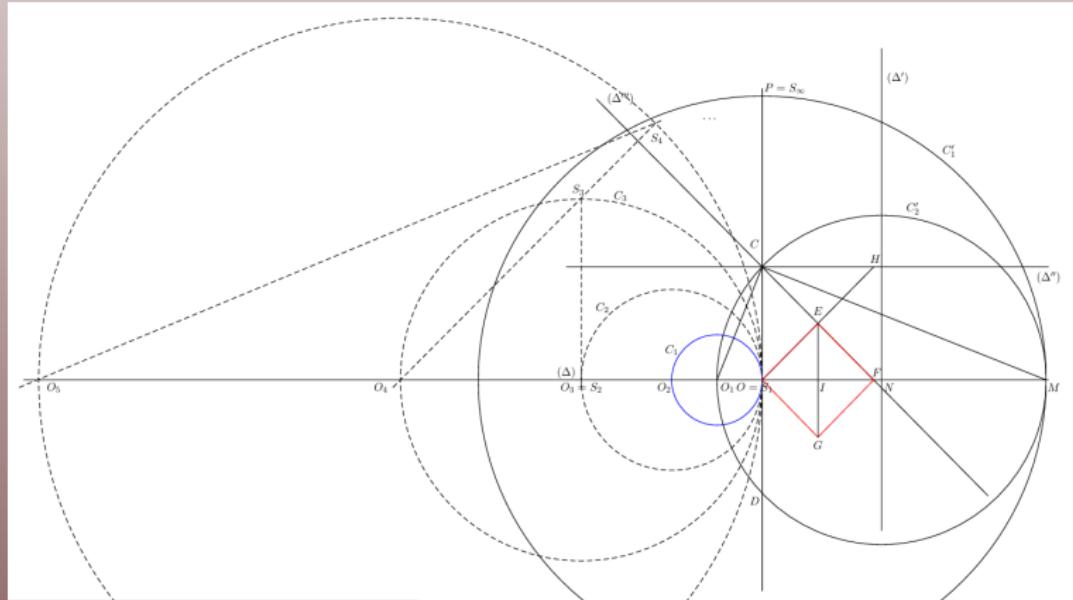
December 2024



Rectification

Starting the construction

We consider a sequence of circles : $(C_{n,n \in N})$ with $O_{n,n \in N}$ as centers and $\rho_{n,n \in N}$ as radius, where $\rho_n = 2^{n-1} \rho_1$ ($\rho_1 \in R^{+*}$). We plot the three first points : $S_1 = O, S_2 = O_3, S_3$.

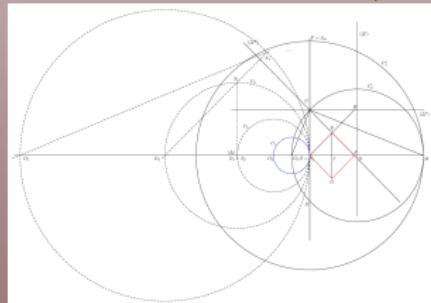


Rectification

Recursive process

If we draw (O_{n+1}, S_n) (we remind that S_n is on C_n), the straightline will intercept C_{n+1} and $S'_{n+1} = O_{n+1}$. S_{n+1} is the point from the upper half plane of (Δ) . O_{n+1}, S_n, S_{n+1} are aligned, so

$\widehat{O O_{n+1} S_n} = \widehat{O O_{n+1} S_{n+1}}$. On the other hand, by theorem, the center angle $\widehat{O O_n S_n}$ is a double value of the angle to the extremity of the diameter from $\widehat{O O_{n+1} S_n}$.



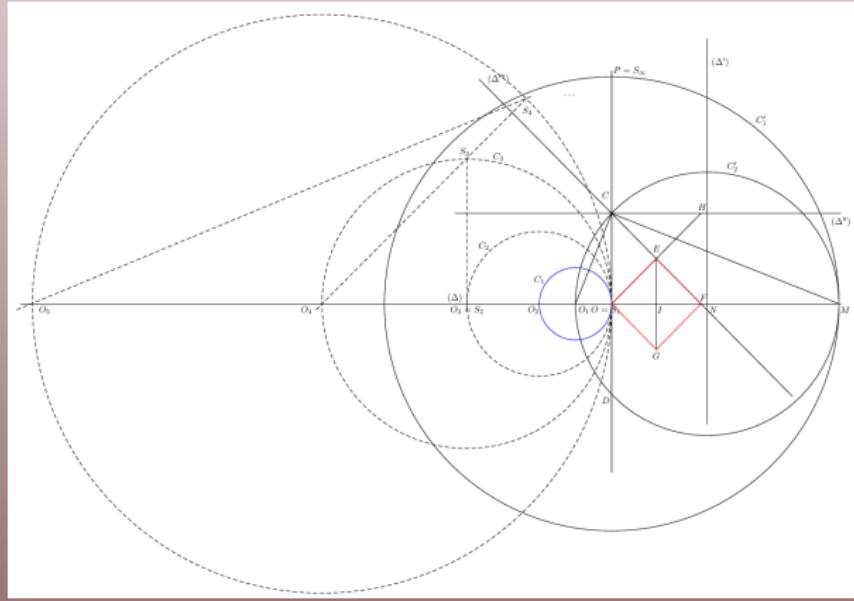
Rectification

We can conclude that the curvilinear arc (OS_n) tends toward $[O, P]$, orthogonal to Δ , with $2\pi\rho_1$ as lenght. Thus, $[O, P]$ form the rectification of C_1 .

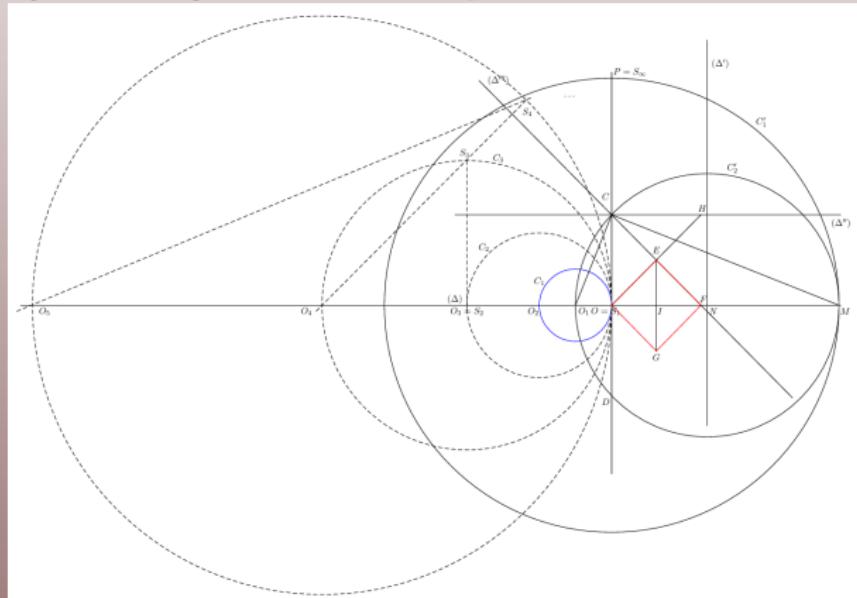
The bundle of circles arcs (O, S_n) define a whole achieved. We conclude that $[OS_n]$ goes to its bound, when n tends to infinity. We show that we can have the rectification in an infinite countable steps with only the rule and the compass.

Squaring the circle

With $[O; P]$ definated, we consider the circle $C'1$ with radius equals to $[O; P]$ and center O . It intercept (OO_1) on 2 points. We call M the point such as $O \in [O_1, M]$

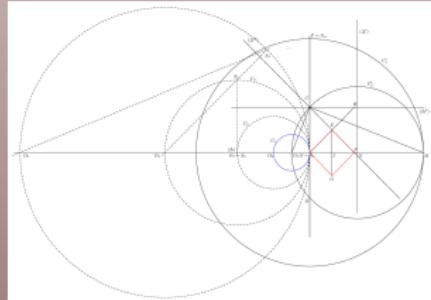


We determine N the middle of $[O_1, M]$ by drawing the mediator of $[O_1, M] : (\Delta')$. The mediator of a segment could be obviously drawn by the only rule and compass.

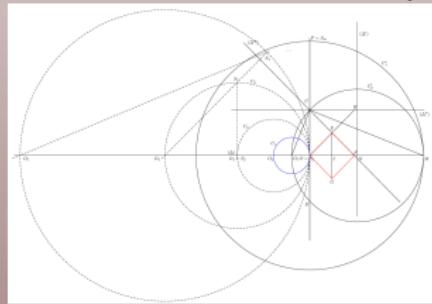


We draw the circle C'_2 with center N , and radius $[N, M]$. The circle intercepts $[O, P]$ on C and D . We call C the point belong to $[O, P]$. The triangle (O_1, C, M) is inscribed in the circle C'_2 with diameter $[O_1, M]$. Hence this triangle is a right angle on C . We can notice that $(OC) \perp (MO_1)$. So the triangles (O_1, O, C) and (N, O, C) are rectangle on O . By the theorem of Pythagore, we check

$OC^2 = OO_1 \cdot OM$. As $OM = OP = 2\pi\rho_1$ and $O_1O = \rho_1$, we have $OC = \sqrt{2\pi}\rho_1$.



We draw up the perpendicular to (OC) on C , that we call (Δ'') , obviously determinable with only the rule and the compass. We put H such as $CH = CO$, we report the magnitude with the compass. Even, we draw the triangle (O, C, H) which is isoscele and right on C .



We build with the compass the point F on Δ such as $OE = OF$. We can build the image point from E to G by the mediator, with the intersection of two circles well choiced (we are keeping the magnitude of compass $[O, E]$) with center O and F . As the triangle (O, C, H) is isoscele with $\widehat{OCH} = \frac{\pi}{2}$, then $\widehat{COE} = \frac{\pi}{4}$. In consequence, $\widehat{OEG} = \frac{\pi}{4}$ and as (E, O, G) is isoscele $\widehat{OGE} = \frac{\pi}{4}$, so $\widehat{EOG} = \frac{\pi}{2}$,

By the definition of the mediators, we have $(OF) \cap (EG) = I$, middle of $[OF]$.

So, the diagonal of the quadrilateral (O, E, F, G) are cutting in the middle, we have (O, E, F, G) as a parallelogram. With the precedent results, we deduct that $OE = EF = FG = GO$ that imply that the parallelogram is a rhombus. Otherwise we have $\widehat{EOG} = \frac{\pi}{2}$. So one angle of the parallelogram is right, then (O, E, F, G) is a rectangle, so we conclude that (O, E, F, G) is a square, with a side equals to $\sqrt{\pi}\rho_1$. So, the area of the square is equal to $\pi\rho_1^2$, which is the surface of C_1 .

Squaring the circle is accomplished with only the rule and the compass in $n_\infty + 7$ steps.

